Partial volume
tolerance of the spinal cord and complications of single-dose
radiosurgery
Spine radiosurgery causes a rapid dose
fall-off within the spinal cord. The tolerance of partial volume of
the spinal cord may determine the extent of clinical application.
The study analyzed the partial volume tolerance of the human spinal
cord to single fraction radiosurgery. A total of 230 lesions with
spine metastases in 177 patients were treated with radiosurgery with
single fraction of 8 to 18 Gy, prescribed to the 90% isodose line
that encompassed the target volume. Spinal cord volume was defined
as 6 mm above and below the radiosurgery target volume. Spinal cord
dose was calculated from the radiation dose/spinal cord volume
histogram and correlated with clinical/neurological status and
radiographic studies. Median follow-up was 6.4 months (range, 0.5-49
months). The 1-year survival rate was 49%. |
|||
|
|||
The procedure of spine radiosurgery has been previously described. The physical and dosimetric characteristics of shaped beam radiosurgery Novalis system (BrainLab, Germany) have been reported. This radiosurgery system uses frameless image-guided positioning and targeting. Immobilization was achieved primarily by using the Bodyfix device (Medical Intelligence, Schwabmunchen, Germany) with vacuum bags. Infrared reflective markers were placed on the skin. CT simulation was performed with intravenous contrast in 2-3 mm slices without spacing. By using the dedicated planning system with BrainScan planning computer (BrainLab), image fusion was routinely performed with simulation CT and MR images. The radiosurgery target volume and spinal cord were delineated. Radiosurgery used multiple (usually 7-9 beams) coplanar intensity-modulated radiation beams to minimize the dose to the critical organs. For treatment, image-guided repositioning was achieved by using an infrared marker and image fusion of internal bony structures. Before the delivery of radiation, orthogonal portal films were obtained for final verification of the isocenter. All patients received single-dose
radiosurgery to the involved spine only. The target volume included
the involved vertebral body and pedicles. When there was a
paraspinal or epidural component the involved spine and the gross
visible tumor were included in the target volume. Ultimately, the
radiosurgery planning target volume (PTV) was the same as the
clinical target volume (CTV) including the gross tumor and the
involved spine. There was no margin for planning of radiosurgery.
The method of target delineation is diagrammatically illustrated
with examples of the actual isodose distribution in Figure . There
can be several different scenarios of spine involvement. Vertebral
body involvement was the most common type of spine metastasis (Fig.
A). In this case, the entire involved vertebral body and both
pedicles were treated with radiosurgery. When the metastasis
involves the dorsal elements (spinous process and laminae), the
target included only the dorsal elements as in Figure C. Involvement
as in Figure B was treated either to the entire bony element
(vertebral body and dorsal elements) or in the same fashion as
Figure A,C but with generous clinical margin (dotted line). No
additional margin was given to the planning tumor volume. Spinal
cord volume was consistently defined as the volume extending from 6
mm above to 6 mm below the radiosurgery target. The target tumor and
the spinal cord were delineated by fusion of contrast-enhanced
simulation CT images with T1-weighted MR images with and without
gadolinium contrast and T2-weighted MR images. In the lumbosacral
region below the cauda equina, the volume of filum terminale was
defined in the same method as the spinal cord. Radiosurgery doses
ranged from 8 to 18 Gy in a single fraction. The radiation dose has
been consistently prescribed to the 90% isodose line that
encompassed the periphery of the target tumor to have the same
estimate of the spinal cord dose.
The spinal cord constraint
has been 10 Gy to the 10% partial volume of the spinal cord, based
on the observation of a Phase I study. The main criterion of
radiosurgery dose selection was the spinal cord dose constraint.
When the spinal cord criterion was not met, the tumor coverage was
compromised or the radiosurgery dose was reduced. In cases where the
target coverage was important, the criterion was relaxed based on
the patient's neurologic or general condition. The radiosurgery
doses were
|